作者:Andreea Pop,系統設計/架構工程師
Antoniu Miclaus,系統應用工程師
Doug Mercer,顧問研究員
(相關資料圖)
R-2R梯形電阻數模轉換器(DAC)
目標
本實驗的目標是探討數模轉換的概念,將CMOS反相器用作梯形電阻分壓器的基準開關(用于DAC中)。
背景信息
我們將簡單的CMOS反相器邏輯門用作一對開關。ADALM2000模塊的數字I/O信號可配置為具有+3.3 V電源電壓的標準CMOS分壓器(推挽模式)。采用最簡單的形式,CMOS輸出可以由一個PMOS器件M1和一個NMOS器件M2組成。通常,CMOS制造工藝經過特別設計,使得NMOS和PMOS器件的閾值電壓VTH大致相等——即互補。然后,反相器的設計人員調整NMOS和PMOS器件的寬長比W/L,使其各自的跨導和RON也相等。兩個晶體管中,只有一個處于導通狀態,同時將輸出端連接到VDD或VSS。我們可以考慮將這兩個電壓用作DAC的基準電壓源。
image001.png
圖1.CMOS輸出驅動器。
在 “電壓模式”中使用R-2R梯形電阻(如圖2所示),根據數字碼交替驅動到兩個基準電壓電平中的任一個(D0-7)。數字0表示VREF–,數字1表示VREF+。根據數字輸入碼,VLADDER(圖2)將在兩個基準電平之間變化。兩個基準電壓的負基準電壓(VREF–)通常為地電壓(VSS)。在本例中,我們將正基準電壓(VREF+)設置為CMOS驅動器的正電源電壓(VDD)。
材料
? ADALM2000主動學習模塊
? 無焊面包板
? 跳線
? 9個20 kΩ電阻
? 9個10 kΩ電阻
? 1個OP27放大器
說明
最好在無焊試驗板上構建圖2所示的8位梯形電阻電路。模擬部件套件(ADALP2000)中提供的電阻數量通常不足以構建完整的8位梯形電阻。如果可以獲得這些電阻,此項目最好使用1%的電阻。
將用藍色框表示的8個數字輸出、示波器通道和用綠色框表示的AWG輸出連接到梯形電阻電路中,如圖所示。注意將電源連接到運算放大器電源引腳。
image002.png
圖2.R-2R梯形電阻網絡電路
硬件設置
image003.png
圖3.R-2R梯形電阻網絡電路試驗板連接
程序步驟
當安裝R1和R2時,設置AWG1的直流電壓與DAC的VREF+相等,即等于CMOS數字輸出的3.3 V電源電壓。此時輸出電壓為雙極性,其擺幅為-3.3 V至+3.3 V。斷開AWG1并移除電阻R1,輸出電壓為單極性,擺幅為0 V至+3.3 V。啟動Scopy軟件。打開模式發生器界面。選擇DIO0至DIO7,并組成一個分組。設置參數,將模式設置為二進制計數器。輸出設置為推挽輸出(PP),頻率設置為256 kHz。此時能看到類似圖4所示的內容。最后,點擊運行按鈕。
image004.png
圖4.模式發生器界面。
打開示波器界面,開啟通道2,并將時基設置為200μs/div,點擊綠色運行按鈕開始運行。有時可能還需要調整通道的垂直范圍(初始條件下,1 V/div比較合適)。通過示波器界面能看到(如圖4所示)電壓從0 V上升到3.3 V,斜坡信號的周期應為1 ms。
image005.png
圖5.示波器界面。
改變數字模式。嘗試隨機模式,并打開示波器上的FFT窗口。您還可以通過生成具有一列0到255(對于8位寬總線)數字的純文本.csv文件,來加載自定義模式。加載自定義模式,看看會出現什么情況。
您可以嘗試加載以下這些預制波形文件:正弦、三角、高斯脈沖等:waveforms_pg。
AD5626 12位nanoDAC
背景信息
AD5626是一款可以使用5 V單電源供電的電壓輸出DAC。它集成了DAC、輸入移位寄存器和鎖存、基準電壓源以及一個軌到軌輸出放大器。輸出放大器擺幅可達到任一供電軌,且設置范圍為0 V至4.095 V,分辨率為每位1 mV。該器件采用高速、三線式、兼容數據輸入(SDIN)的DSP、時鐘(SCLK)和負載選通(LDAC)的串線接口。它還有芯片選擇引腳,可連接多個DAC。上電時或用戶要求時,CLR輸入可將輸出設置為零電平。
image006.png
圖6.AD5626的簡化功能框圖。
除1位DAC寄存器外,AD5626還有一個獨立的串行輸入寄存器,新數據值可以預載到該串行寄存器中,而不會干擾現有DAC輸出電壓。通過選通LDAC引腳,可以將加載值傳輸到DAC寄存器。
單極性輸出操作
這種操作模式是AD5626的基本模式。您可以根據DAC的單極性代碼表驗證AD5626的功能是否正常。
表1.AD5626的單極性代碼表
DAC寄存器中的十六進制數 | DAC寄存器中的十進制數 | 模擬輸出電壓(V)
關鍵詞: 業界資訊X 關閉 專題
X 關閉 信息
行業
|